Username: Passwort:
Neue User - Registrierung
Moderator: Gror 
 Backgammon

Backgammon a varianty.


Nachrichten pro Seite:
Liste der Diskussionsforen
Es ist Dir nicht erlaubt, Nachrichten in diesem Forum zu schreiben. Man muss dazu mindestens den Mitgliedsrang Brain Bauer (Pawn) haben!
Modus: Jeder kann schreiben
In Postings suchen:  

<< <   1 2 3 4 5 6 7   > >>
4. März 2005, 19:59:52
Alex 
Luisifer: Podle me se neda vyhrat bez urcite miry rizika ktere musis podstoupit. A to podle me musis zapocitat do celkoveho pomeru.

4. März 2005, 19:58:28
Luisifer 
Thema: Re:
Alex: ano ano

4. März 2005, 19:58:11
Alex 
Luisifer:Myslis tomu pomeru?

4. März 2005, 19:57:25
Luisifer 
Thema: Re:
Alex: A tomu bych vcelku i věřil!

4. März 2005, 19:56:21
Alex 
Chapu ze vsechny hry maji svoje zakonitosti, strategii a ruzne figle. Nicmene neverim ze ten pomer je 30% stesti a 70% taktika.

4. März 2005, 16:07:54
NAZARETSKY 
Obvykle je to tak, ze si clovek pamatuje ty zajimaqvy pripady a ty obycejny ne, takze ma vnitrne pocit, ze je to o stesti, ale ve skutecnosti tomu neni tak :)

4. März 2005, 07:26:05
lukulus 
Zakony profesora Parkinsona pracuji vsude

Alex: prave ze o tom, hrat takticky nebo netakticky, o tom to je. Na jine sajte jsem se bavil s clovekem co hraje BG zavodne. Udaval 30% kostky 70% umeni hrace.

Muze ti padnout desetkrat dabl 6, ale v tom pripade pred zahajeniom budes mit urcite jeden kamen na baru a souper ti bude blokovat nasazovaci pole

3. März 2005, 22:55:57
Pedro Martínez 
Obvykle to bývá tak, že pokud Ti jediný možný hod ze všech 36 má zhatit výhru, tak ho hodíš. Naopak jestliže má Tvůj protivník jediný možný hod ze všech 36, jak hru zvrátit, tak ho hodí.

3. März 2005, 16:50:53
Alex 
Jasne, ale ja bych to s nadsazkou prirovnal k tomu ze se vyzbrojis teorii pravdepodobnosti a pujdes si pro jisty prachy do casina.

3. März 2005, 16:37:29
Fencer 
Presne tak. Ikdyz je pravdepodobnost padnuti dvou sestek desetkrat po sobe priserne mala, porad je vyssi nez nula, takze jednou muze nastat.

3. März 2005, 16:16:29
Alex 
Myslis ze pri tak malem poctu hodu se da pocitat seriozne s teorii pravdepodobnosti. Podle me to moc nefunguje a je to z 90% o stesti co ti padne a nemas temer sanci hru ovlivnit. Tedy pokud nehrajes vylozene netakticky.

3. März 2005, 15:57:04
lukulus 
samozrejme, ale pokud si musis vsadit, tak si vyyberes, ze v sobotu Sparta prohraje doma s Blsany nebo, ze je porazi?

BTW pamatuji se, ze v prvnich ctyrech hodech Osadniku z Katanu nam padla 10 3x ... a vsichni tam meli vesnici, jenom ja ne, bueee:)

3. März 2005, 15:49:32
Fencer 
Thema: Re:
lukulus: At je pravdepodobnost jakkoliv nizka, prislusny jev muze teoreticky nastat pokazde :-)

3. März 2005, 15:48:37
lukulus 
Kdyz musis tahnout na pole, kde te muze souper vyhodit, tak na zaklade znalosti teoprie pravdepodobnosti muzes odhadnout, kde je vetsi pravdepodobnost, ze se ti to stane a podle toho zvolit variantu.

3. März 2005, 15:28:58
Alex 
Nechapu v jakem smyslu. Ze si urcis co ti pravdepodobne padne a na tom zalozis svoji herni strategii?

3. März 2005, 09:01:07
lukulus 
muze ti to pomoci pri rozhodovani:) ale taky nemusi:)

3. März 2005, 04:17:10
Alex 
Muze nekdo me, jako blbcovi vysvetlit jak to v praxi souvisi z hrou?

24. Feburar 2005, 00:40:06
Pedro Martínez 
Mně se osvědčila taktika spočívající ve snaze obsadit pole 7 a 18. Jinak stejná strategie jako u běžného BG, tzn. snažit se o blok soupeře (nejlépe v jeho vlastní základně). Spěchat s vytahováním kamenů z baru podle mě není potřeba - když nemám jiný lepší tah, vyhodím něco z baru ven.

23. Feburar 2005, 07:12:40
swamp 
Takže hrát jak to vyjde a vyndat je když se to hodí?

23. Feburar 2005, 05:11:31
Pedro Martínez 
Thema: Re:
swamp: Já myslím, že ani jedno, ani druhý...

22. Feburar 2005, 18:00:45
swamp 
Co myslíte,je lepší nejdřív dát ven všechny žetony z baru a pak teprv hrát nebo nejdřiv dostat všechny žetony ze soupeřovy čtvrtky a teprv pak je vyndat?

6. Feburar 2005, 23:58:36
whikki 
souhlas s Pedrem - prakticky ověřeno

6. Feburar 2005, 23:57:13
Luisifer 
Už jsem si vzpomněl proč jsem na tu matematickou pravděpodobnost a statistiku přestal (jakmile se to tam začalo hemžit integrálama) chodit. Protože do té doby mě to vůbec nebavilo a od té doby to byl hnus.

6. Feburar 2005, 23:51:03
Pedro Martínez 
souhlas se serendipity, s jedinou výjimou - arpa z 1000 hodů doubla hodí 750x---LOL

6. Feburar 2005, 23:50:41
Luisifer 
Mno a na mě zbývá spánek s bolestí hlavy ... nechce se mě jít pro acylpirin.... :(

6. Feburar 2005, 23:50:10
Serendipity 
Mohu jit spat s pocitem dobre vykonane prace :o)))

6. Feburar 2005, 23:48:16
Luisifer 
mno a 17 vs 170 je už rozdíl. Pravděpodobnost je ovšem stejná, to jo .... Asi už půjdu spát ......

6. Feburar 2005, 23:46:31
Luisifer 
Přesněji teda - kdo hraje víc (což je spíš věž než pinčlík).

6. Feburar 2005, 23:46:05
Serendipity 
Super. Takze tobe zalezi na tom, ktery z 11 jevu ti padne, ale jejich pravdepdobnost je ruzna. Stejne tak v backgammonu mas 21 jevu, ale 15 jich ma pravdepodobnost 1/18 a 6 ma pravdepodobnost 1/36.

A vez ma stejnou pravdepodobnost doublu jako pesec, protoze vez hodi z 1000 tahu cca 170 doublu, zatimco pesak za stejny cas ze 100 tahu 17 doblu. Kapisto?

6. Feburar 2005, 23:18:55
Luisifer 
Verändert von Luisifer (6. Feburar 2005, 23:21:44)
Dobře, ale stejně mám pravdu s tím, že věž má větší pravděpodobnost doublů než pinčlík tak jak jsem to napsal. :)
Protože si to prostě hodí víckrát. :)

6. Feburar 2005, 23:17:05
Luisifer 
a *Pedro mi ještě skáče po hlavě*

6. Feburar 2005, 23:16:17
Pedro Martínez 

6. Feburar 2005, 23:16:15
Luisifer 
*snaží se mi zblbnout to co nemám na krku*

6. Feburar 2005, 23:14:50
Luisifer 
ANO

6. Feburar 2005, 23:12:59
Serendipity 
No a tak to prave neni. Protoze 12 hodis jedine kombinaci 6-6, kdezto 7 hodis v pripadech 1-6, 2-5, 3-4. Souhlasis, ze pravdepodobnost je ruzna?

6. Feburar 2005, 23:10:33
Luisifer 
Thema: Re:
Serendipity: *Tak už přestal acylpirin zabírat*
Jestli jsem na to vrhl dobře svoje malomocny oko, tak to bude 1/11. :)

6. Feburar 2005, 23:06:40
Serendipity 
Takze zbyva jeste presvedcit Luisifera :o)))

Heled, zahrajem si jinou hru nez Backgammon. Zahrajem si na soucty. Kazdy z nas hodi dvema kostkama a ten, kdo ma vyssi soucet bodu, ten vyhral. Kazdy hod muze dopadnout v rozsahu 2 - 12. Takze jevu (v Nazaretskeho terminologii) je 11: 2, 3, 4, ... 11, 12. Co myslis, je pravdepodobnost kazdeho z nich 1/11?

6. Feburar 2005, 23:05:49
whikki 
Thema: Re:
Luisifer: protože pravděpodobnout platí pro hod dvěma kostkama najednou obecně, takže každý z vypsaných případů má tu pravděpodobnost 1/36
V backgammonu je ti jedno v jakém pořadí kostky padly, proto u nedoublu (hrozný slovo) můžeš využít dvě možnosti z tabulky (ty možnosti jsou dány obecným hodem dvěma kostkama, proto se řídí stejnou tabulkou), tedy 2 * 1/36 = 2/36 (= 1/18)

6. Feburar 2005, 23:05:00
Luisifer 
jj, něco od nazaretského tam v tomto smyslu hlodá, ale stále si to i při tom jak mi napsal, že si mám hodit 1000 umím přepsat na těch 21, protože prostě ty kostky nerozliším. A u backgammonu rozlišeny nejsou.

6. Feburar 2005, 23:02:57
Pedro Martínez 
Luisifer: Tvým problémem je to, že u toho pořád myslíš na backgammon a na to, že 1+2 a 2+1 pro Tebe pro hru znamená totéž.

6. Feburar 2005, 23:00:04
whikki 
jsem rád, že sme se shodli
2/36 = 1/18

6. Feburar 2005, 22:58:23
Luisifer 
Verändert von Luisifer (6. Feburar 2005, 23:00:24)
Nevím proč mě to nepřesvědčuje. Vypsali jste teï už kompletní seznam všech jevů (pokud jsou dvě kostky se závislostí na pořadí). Ale IMHO je těch jevů jen 21 (pokud se to týká backgammonu).

6. Feburar 2005, 22:56:21
Pedro Martínez 
Takže toto jsem dostal:

Existuje 36 možných variant od 1-1, 1-2, 1-3... až do 6-4, 6-5, a 6-6.

1-1 1-2 1-3 1-4 1-5 1-6
2-1 2-2 2-3 2-4 2-5 2-6
3-1 3-2 3-3 3-4 3-5 3-6
4-1 4-2 4-3 4-4 4-5 4-6
5-1 5-2 5-3 5-4 5-5 5-6
6-1 6-2 6-3 6-4 6-5 6-6

Jak můžeš vidět, "nedoubly" se objevují v tomto výčtu dvakrát, tedy pravděpodobnost je 1/18, zatímco doubly se tam vyskytují každý jenom jednou, tzn. že pravděpodobnost je 1/36.

Takže odpověï zní: 1/36 pro doubly, 1/18 pro vše ostatní.

6. Feburar 2005, 22:55:10
whikki 
Verändert von whikki (6. Feburar 2005, 22:56:25)
tak jsem se prokousal až sem, a přestože sem se původně přikláněl na stranu Luisifera, tak nakonec stejně jako Pedro musím dát za pravdu druhé straně.
A došlo mi to u některého příspěvku Nazaretskyho (takže jisté didaktické schopnosti určitě máš, neb u mě zafungovaly), že sem se na to podíval z druhé strany - jestli je 3'-3" jediný případ stejný jako 3"-3' - a on je. Do těch 36 případů se mi totiž pořád nevím proč pletlo, že když ty kostky rozliším (a tím pádem budou 1-2 a 2-1 různé případy), že jsou dva případy i 3'-3" a 3"-3'. Ale docvaklo mi to, až když sem si všech 36 případů rozepsal (stejně jako Pedro prvně rozepsal oněch 21 jevů) - a ejhle, opravdu je tam každý double jenom jednou:

1-1    2-1    3-1    4-1    5-1    6-1
1-2    2-2    3-2    4-2    5-2    6-2
1-3    2-3    3-3    4-3    5-3    6-3
1-4    2-4    3-4    4-4    5-4    6-4
1-5    2-5    3-5    4-5    5-5    6-5
1-6    2-6    3-6    4-6    5-6    6-6

Tedy ač v Backgammonu je jedno v jakém pořadí (rozlišení) čísla padly, pro výpočet pravděpodobnosti hodu dvěma kostkama to jedno opravdu není.
Tedy pravděpodobnost doublu 1/36 a nedoublu 2/36

Díky všem zůčastněným, že sem si v tom konečně udělal jasno :o)

6. Feburar 2005, 22:28:50
Luisifer 
Mno jo .... jen jestli pochopí to tvé zadání :) jinak ok :)

6. Feburar 2005, 22:25:24
Pedro Martínez 
Zadal jsem mu prostě úkol, aby mi sdělil, zda je pravděpodobnost hodu "doublu" na dvou zaměnitelných kostkách rovna pravděpodobnosti hodu "nedoublu" na týchž kostkách. Je to opravdu zkušený matematik, takže jeho slovo beru za bernou minci. Přepíšu Ti sem pak všechno, co mi napíše. OK? Jak víš, sám matematik nejsem, takže snad to od něj bude trochu srozumitelnější.

6. Feburar 2005, 22:20:22
Luisifer 
Verändert von Luisifer (6. Feburar 2005, 22:21:10)
Oki :) to jsem rád :)
Jen aby dostal přesny vstupní údaje. :)

6. Feburar 2005, 22:19:37
Pedro Martínez 
Pro jistotu jsem poslal zprávu zdatnému matematikovi, uvidíme, co na to poví.

6. Feburar 2005, 22:10:01
Luisifer 
Kdyby to bylo jedno, tak proč by v kombinatorice existovalo tolik způsobů kombinování. ;)

6. Feburar 2005, 22:07:52
Pedro Martínez 
To je jedno. Zaměnitelný nezaměnitelný.

<< <   1 2 3 4 5 6 7   > >>
Datum und Zeit
Freunde Online
Abonnierte Foren
Vereine
Tip des Tages
Copyright © 2002 - 2024 Filip Rachunek, all rights reserved.
Zurück nach oben