Je úplně to samý...vždy 1+2 opravdu můžeš hodit dvěma způsoby. Ono nezáleží na tom, že v konečném důsledku pro Tebe oba znamenají totéž, faktem, je, že jednou padla jednička na první kostce a podruhé na druhé kostce. A to jsou pro účely pravděpodobnosti DVA různé případy.
Luisifer: Zviklat jsem se nenechal, nechal jsem se přesvědčit. Vezmi si tento příklad: Na válci hracího automatu je 21 různých symbolů. 6 z nich je tam jen jednou, zbytek (15) dvakrát. Je pravděpodobnost, že padnou, u všech symbolů stejná?
V tom případě se obávám, že pod tíhou skutečností předložených uživatelem NAZARETSKY musím přiznat, že jsem se ve svých předchozích příspěvcích mýlil a dát mu za pravdu.
Luisifer: má pravdu. Ono ve skutečnosti doopravdy nezáleží (pro hru), jestli hodíš 1+2 nebo 2+1. Ale pro výpočet pravděpodobnosti je třeba opravdu tyto dvě možnosti brát v potaz samostatně. Díky Nazaretskymu za vysvětlení. Teï se mi to zdá už jasné jak facka. Serendipity měla od začátku pravdu. 1/36.
Luisifer: vtip je v tom, ze fyzikalne neexistuji nerozlisitelne kostky. To, ze je nerozlisujes neznamena, ze jsou nerozlisitelne. Mas spatne videni skutecnosti.
NAZARETSKY: Nejdůležitější otázka: Je pro výpočet pravděpodobnosti hodu 1+2 v backgammonu na BK zapotřebí nahlížet na 2+3 a 3+2 jako na dva odlišné hody, které je třeba do výpočtu zahrnout každý zvláš?
Ty sem prostě furt taháš: Tohle je první kostka a tohle je druhá kostka. Na první mě padla jednička. Na druhé dvojka. Mám jednu situaci. Na první mě padla dvojka, na druhé jednička, mám druhou. Takže celkem 36. Ale to je jen pokud se rozhodneš že máš první a druhou - jiné počáteční úkol než co je v backgammonu.
fyzikálně nastane 36 jevů, pokud si odlišíš kostky (nebo si řekneš, že nevíš v jakém pořadí je přečíst, tak si řekneš, že jsi jednou hodil 2-1 a podruhy 1-2, ale přitom jsi v obou případech hodil to samy) ... pokud si je neodlišíš, tak taky nenastane.
NAZARETSKY toimetatud (6. veebruar 2005, 21:01:35)
Pravdepodobnost spocitam tak, ze si vezmu vsechny situace, ktere mohou nastat... Tech je 36. Pak si spocitam, kolik techto situaci splnuje mnou definiovany jev 2-1. V temto pripade 2. p = 2/36.
Mno a jak se tak koukám, tak jsi 2-1 neuvedl jako jev. Čímž by mě zajímalo jak z těchto dvojic - ktery jsi napsal - dostaneš pravděpodobnost jakékoli z nich. A potom by mě zajímala velikost pravděpodobnosti 1-2 a velikost pravděpodobnosti pro 6-6.
NAZARETSKY: Nabízí se ještě jednou to co tu serendipity navrhla. Vypiš si jaky jevy mohou nastat. Vypíšeš mi je sem ještě jenou? (ikdyž to už pedro udělal - nevím, jestli jsi to četl od toho co jsem se k tomu vyjádřil)
Jestli tvrdis, ze podle pravidel backammonu ma miot 2+1 (eq 1+2) stejnou p ravdepodobnost jako 2+2, tak mi rekni, jakym zpusobem top hrali lide ve stredoveku.
protoze kdyz hazis dvema kostkama, tak dostabnes pravdepodobnost vesmirnou, tzn, 2+1 ma vetsi pravdepobnost, nez 2+2.
Prozrad mi prosim, jak to tenkrat ti lide hrali?
NAZARETSKY: Ano, abych věděl jakou mám šanci z nabízenéch možností. A nabízeny možnosti mi nenabízí možnost 1-2 a dále možnost 2-1 (ale tyhle dvě pořadí mi nabízejí jen jako jednu možnost).
Urcujes pra depodobnost [pto, aby jsi pro priste vedel, jakou mas sanci.
Veci se nechovaji, podle lidskych predtav, ale podle fyzikalnich zakonu vesmiru...
No a prave tak, pro 1,2 je ve vizc moznosti, nez pro 2,2. To, ze ty ty kostky nerozlisujes, jezne neznamena, ze je nerozlisuje vesmir sam... pro vesmir, je 1,2 a 2,1 neco jineho, jeden jev z toho udelas az ty. Tak jako je por vesmir neco jineho padne li 3,4,5,6 ale jeden jev jsem z toho udelal ja.
Mno, snažíš se to zamotat. To co jsi napsal teï už je jiná úloha a jestli jsem to četl dobře, tak by stejnou pravděpodobnost mít neměly, protože pro menší rovno 3 je víc možností, ktery úlohu splňují.
Takze ty chces tvrdit, ze kdyz budu hazet kostkou, a urcim si pouhe dva jevy:
kdy mi padlo cislo mensi nebo rovno dvema a druhy jev kdy mi padlo cislo vetsi nebo rovno trema, takze tyto jevy budou mit stejnou pravdepodobnost, to snad ne, ne?
Stalo. :) Ale ty dva různy způsoby jsi z toho udělal ty. :)
Ale z hlediska pravděpodobnosti je to jedno (teda jeden způsob). :)
Přesněji pro podle pravidel pro backgammon je to jedno a to samé. V prostoročase, kde se nehledí na to jaky jsou pravidla backgammonu (jiny zadání pravděpodobnostní úlohy) je to samozřejmě dvojí. :)
Luisifer: hodit dvema kostkama najednou, je totez jako kdyz hazis jednou kostkou dvakrat.
Ale prece je jedno jestli napoprve padla 1 a napodruhe 2
nebo
napoptrve 2 a napodruhe 1
...
ze?
:) Ani dvěma různými způsoby v této hře nastat nemůže :)
(dva různé způsoby z toho udělá až !!!člověk!!! který si nejdřív všimne, že na jedné z kostek je jednička a na druhé dvojka. A tak řekne, že padlo 1-2 ... ale stejně to zase hru neovlivní, protože druhý si to klidně prohodí, protože hraje on a mu se hodí 2-1 ... a co čert nechtěl on stejně nejdřív viděl tu dvojku a až potom jedničku)
Je tyo jeden jev, ktery muze nastat dvema ruznymi zpusoby.
Kdezto 2+2 je takyjeden jev, ale muze nastat pozue jedinym zpusobem.
To je ten rozdil, mezi doublema nedoublem.
(peida) Kui Sa tahad, et teised kasutajad ei teaks, millega Sa tegeled, siis võid lehel Seaded valida varjatud režiimi (ainult tasulised liikmed). (pauloaguia) (näita kõiki vihjeid)