A chi-square test is almost pointless; obviously this is almost impossible to happen just by coincidence, if the probability of equal start rolls is 1/18 = 5.556 %. But I have done it anyway.
Every one of the n = 630 games falls in one of two classes: class 1: first and second roll equal (expected probability p1 = 1/18) class 2: first and second roll not equal (p2 = 17/18)
Y1 = 218 is the number of games in class 1. Y2 = 412 the games in class 2.
now is calculated: V = (Y1 - n * p1)^2 / (n * p1) + (Y2 - n * p2)^2 / (n * p2) = (218 - 35)^2 / 35 + (412 - 595)^2 / 595 = 1013.1
If the dice were not biased (probabilities p1 and p2 as expected), then the value V would be lower than 6.635 with probability 99 %, and lower than 10.84 with probability 99.9 %.
(edit:) see this table for the values to compare V with. With 2 classes one must look in the line with DF=1 (degrees of freedom).
(ascunde) Dacă nu vrei ca ceilalţi utilizatori să vadă ce faci poţi să treci la modul pelerina de la Setări(doar cei care un statut de membru de la Cal Brain în sus) (pauloaguia) (arată toate sfaturile)